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An Introduction to Value at Risk1 
 

This chapter provides an introduction to value at risk. We examine five basic models for 

calculating value at risk, and how to assess the effectiveness of value at risk models 

through backtesting. 

What is Value at Risk? 
Value at risk (VaR) is one of the most widely used risk measures in finance. VaR was popularized by J.P. 

Morgan in the 1990s. The executives at J.P. Morgan wanted their risk managers to generate one statistic 

at the end of each day, which summarized the risk of the firm’s entire portfolio. What they came up with 

was VaR. 

If the 95% VaR of a portfolio is $100, then we expect the portfolio will lose $100 or less in 95% of 

the scenarios, and lose $100 or more in 5% of the scenarios. We can define VaR for any confidence level, 

but 95% has become an extremely popular choice in finance. The time horizon also needs to be specified 

for VaR. On trading desks, with liquid portfolios, it is common to measure the one-day 95% VaR. In other 

settings, in which less liquid assets may be involved, time frames of up to one year are not uncommon. 

VaR is decidedly a one-tailed confidence interval. 

 

Figure 1 

                                                           
1 This chapter is part of a series of chapters by Michael B. Miller, which can be found at www.risk256.com. Please 
do not reproduce without permission. To request permission, or to provide feedback, you can contact the author, 
mike@risk256.com. This version of the chapter was last updated May 7, 2013.   
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Figure 1 provides a graphical representation of VaR at the 95% confidence level. The figure 

shows the probability density function for the returns of a portfolio. Because VaR is being measured at 

the 95% confidence level, 5% of the distribution is to the left of the VaR level, and 95% is to the right. 

In order to formally define VaR we begin by defining a random variable L, which represents the 

loss to our portfolio. L is simply the negative of the return to our portfolio. If the return of our portfolio 

is −$600, then the loss, L, is +$600. For a given confidence level, 𝛾, then, we can define value at risk as: 

 

𝑃[𝐿 ≥ VaR𝛾] = 1 − 𝛾 

Equation 1 

 If a risk manager says that the one-day 95% VaR of a portfolio is $400 this means that there is a 5% 

probability that the portfolio will lose $400 or more on any given day, that L will be more than $400.  

If an actual loss exceeds the predicted VaR threshold, that event is known as an exceedance. 

Another assumption of VaR models is that exceedance events are uncorrelated with each other. In other 

words, if our VaR measure is set at a one-day 95% confidence level, and there is an exceedance event 

today, then the probability of an exceedance event tomorrow is still 5%. An exceedance event today has 

no impact on the probability of future exceedance events. More generally, the probability of an 

exceedance conditional on all available information should equal the unconditional probability of an 

exceedance. In other words, an exceedance event should be no more likely to occur on a Tuesday, the 

day after the market is up, or when the level of risk is high. We return to these assumptions at the end 

of this chapter when we discuss back-testing. 

VaR has become extremely popular in risk management. The appeal of VaR is its simplicity. 

Because VaR can be calculated for any portfolio, it allows us to easily compare the risk of different 

portfolios. Because it boils risk down to a single number, VaR provides us with a convenient way to track 

the risk of a portfolio over time. Finally, the concept of VaR is intuitive, even to those not versed in 

statistics. Because it is so popular, VaR has come under a lot of criticism. As we will see, VaR is not a 

perfect risk measure, but it is incredibly versatile. While some of the criticism is justified, much of the 

criticism is misplaced. 

Delta-Normal VaR 
One of the simplest and easiest ways to calculate VaR is to make what are known as delta-normal 

assumptions. For any underlying asset, we assume that the log returns are normally distributed, and we 

approximate the returns of any option based on its delta-adjusted exposure. The delta-normal model 

includes additional assumptions when multiple securities are involved, which we will cover when we 

begin to look at portfolio risk measures. 

 The delta-normal assumptions make it very easy to calculate VaR statistics even with limited 

computing power. This made delta-normal models a popular choice when VaR models were first 

introduced. Predictably, the results of such a simple model were often disappointing. A good risk 
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manager would often be able to compensate for these deficiencies, but the basic model presented an 

easy target for critics. Delta-normal models are rarely used in practice today, but are still an excellent 

starting point when learning about VaR models. By understanding the pros and cons of the delta-normal 

model we will be better able to understand the pros and cons of more complex models. Unfortunately 

many people outside of risk management believe that delta-normal models are still widely used in 

practice, or believe that the shortcomings of these simple models are somehow inherent to all risk 

models. 

 To calculate the delta-normal VaR of a security, we start by calculating the standard deviation of 

returns for the security, or, in the case of an option, for the returns of the option’s underlying. For 

regular securities, we then multiply the return standard deviation by the absolute market value or 

notional of our position to get the position’s standard deviation. For options we multiply by the absolute 

delta-adjusted exposure. The delta adjusted exposure being the value of the underlying multiplied by 

the option’s delta.  We then multiply the position’s standard deviation by an appropriate factor based 

on the inverse of the standard normal distribution (e.g. −1.64 for 95% VaR).  

 Notice that we have not said anything about the expected return. In practice, most VaR models 

assume that the distribution of return has a mean of zero. This is almost always a very reasonable 

assumption at short horizons. At longer horizons this assumption may no longer be reasonable.  Some 

practitioners will also assume that the time decay for options is also zero. While this assumption may 

also be valid in many situations, it can fail even over short time horizons. In what follows, unless stated 

otherwise, assume security returns have zero mean but include theta in calculating VaR. 

 

Sample Problem 
Question 

You estimate the standard deviation of daily returns for XYZ Corp.’s stock at 2.00%. You own both the 

stock and a call option on the stock with a delta of 40% and 1-day theta of −0.01. The underlying price is 

$100. Calculate the 1-day 95% daily VaR for each security. 

Answer 

The 95% VaR corresponds to the bottom 5% of returns. For a normal distribution 5% of the distribution 

is less than 1.64 standard deviations below the mean. We can get this result from a lookup table, from a 

statistics application, or from a spreadsheet. For example, in Excel =NORMSINV(0.05) would give us 

−1.64, the negative sign indicating that the result is below the mean. 

For the stock, the final answer is simply: −1.64 × $100 × 2.00% = −$3.28 (if you use additional 

decimal places for the number of standard deviation, you might get −3.29%). For the option, the final 

answer is only slightly more complicated −1.64 × 40% × $100 × 2.00% −0.01 = −$1.32. 

The 1-day 95% daily VaR for the stock and option are a loss of $3.28 and $1.32, respectively. 
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 Historical VaR 
Another very simple model for estimating VaR is historical simulation or the historical method. In this 

approach we calculate VaR directly from past returns. For example, suppose we want to calculate the 1-

day 95% VaR for an equity using 100 days of data. The 95th percentile corresponds to the least worst of 

the worst 5% of returns. In this case, because we are using 100 days of data, the VaR simply corresponds 

to the 5th worst day. If we have the following 100 returns, sorted from lowest to highest: 

 Rank Return 

Worst 1 -4.00% 

  2 -3.62% 

  3 -3.57% 

  4 -3.52% 

  5 -3.37% 

  6 -3.24% 

  7 -3.14% 

  8 -3.07% 

  9 -2.92% 

  … … 

  99 3.79% 

Best 100 4.08% 
Table 1 

The 95th percentile VaR in this case corresponds to −3.37%, or, dropping the negative sign, we would 

say that our 1-day 95% VaR is a loss of 3.37%. 

 For an infinitely-lived underlying asset, the historical approach could not be easier. For 

derivatives, such as equity options, or other instruments with finite lifespans, such as bonds, it is slightly 

more complicated. For a derivative, we do not want to know what the actual return series was, we want 

to know what the return series would have been had we held exactly the same derivative in the past. 

For example, suppose we own an at-the-money put with two days until expiry. 250 days ago, the option 

would have had 252 days until expiry, and it may have been far in or out of the money. We do not want 

to know what the return would have been for this option with 252 to expiry, we want to know what the 

return would have been for an at-the-money put with two days to expiry, given conditions in the 

financial markets 250 days ago. Similarly, for a bond with 30 days to expiry, for risk purposes, we are 

interested what the return of a bond with 30 days to maturity would have been 250 days ago, not what 

the return of a bond with 280 days to maturity was. These constant maturity series, or back-cast series, 

are quite common in finance. The easiest way to calculate the back-cast series for an option would be to 

use a delta approximation. If we currently hold a put with a delta of −30%, and the underlying return 

250 days ago was 5%, then our back-cast return for that day would be −1.5% = −30% × 5%. A more 

accurate approach would be to fully reprice the option, taking into account not just changes in the 

underlying, but time-decay, changes in implied volatility and changes to the risk-free rate. Just as we 

could approximate option returns using delta, we could approximate bond returns using DV01, but a 
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more accurate approach would be to fully reprice the bond based on changes in the relevant interest 

rates and credit spreads. 

 One advantage of historical VaR is that it is extremely simple to calculate. Another advantage is 

that it is easy to explain to non-risk professionals. Most financial professionals will be very used to 

looking at cumulative return charts. The returns used to create a cumulative return chart are the same 

returns used to calculate historical VaR. If there is ever a question about the validity of a historical VaR 

calculation it is easy enough to pull up a chart of historical returns to look for a potential source of error. 

  The delta-normal approach is an example of what we call a parametric model. We say that the 

model is parametric because it is based on a mathematically defined, or parametric, distribution (in this 

case, the normal distribution). By contrast the historical approach is non-parametric. We have not made 

any assumptions about the distribution of historical returns. There are advantages and disadvantages to 

both approaches.  The historical approach easily reproduces all the quirks that we see in historical data, 

changing standard deviation, skewness, kurtosis, jumps, etc. Developing a parametric model that 

reproduces all of the observed features of financial markets can be very difficult. At the same time, 

models based on distributions often make it easier to draw general conclusions. In the case of the 

historical approach, it may not be easy to tell if a VaR forecast is the result of a particularly unusual set 

of input returns. 

Monte Carlo Simulation 
 Monte Carlo simulations are widely used throughout finance, and they can be a very powerful 

tool for calculating VaR. As an example of how we would calculate VaR using a Monte Carlo simulation, 

imagine we have a position in gold, and we believe that the daily log returns of gold are normally 

distributed with a mean of 0.01% and a standard deviation of 1.40%. To calculate the VaR of this 

position, we could generate 1,000 draws from a normal distribution with a mean of 0.01% and a 

standard deviation of 1.40%, convert the log returns into standard returns, and then sort the returns 

from lowest to highest. If we are interested in our 95% VaR, we simply select the 50th worst return from 

the list. For this set up, the Monte Carlo simulation is very straightforward, but it is also inefficient. 

Because the log returns are normally distributed, we know that the 5th percentile is −1.64 standard 

deviations below the mean, corresponding to a log return of −2.29% = 0.01% −1.64 × 1.40%. 

 The real power of Monte Carlo simulations is in more complex settings, where instruments are 

non-linear, prices are path dependent, and distributions do not have well defined inverses.     

 Monte Carlo simulations also make it easy to calculate multi-period VaR. In the preceding 

example, if instead of being interested in the 1-day VaR, we wanted to know the 4-day VaR, we would 

simply generate four 1-day log returns, using the same distribution as before, and add them together to 

get one 4-day return. We could repeat this process 1,000 times, generating a total of 4,000 1-day 

returns. As with the 1-day example, in this particular situation, there are more efficient ways to calculate 

the VaR statistic. That said, it is easy to imagine how multiday scenarios could quickly become very 

complex. What if your policy was to reduce your position by 50% every time you suffered a loss in excess 

of 3%? What if returns exhibited positive serial correlation, with positive excess returns more likely to be 
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followed by positive excess returns, and negative excess returns more likely to be followed by negative 

excess returns? 

 Monte Carlo simulations are usually based on parametric distributions, but we could also use 

non-parametric methods, randomly sampling from historical returns. Continuing with our gold example, 

if we had 500 days of returns for gold, and we wanted to calculate the 4-day VaR, we would randomly 

pick a number from 1 to 500, and select the corresponding historical return. We would do this four 

times, to create one 4-day return. We can repeat this process, generating as many 4-day returns as we 

desire. The basic idea is very simple, but there are some important details to keep in mind. First, 

generating multi-period returns this way involves what we call sampling with replacement. Pretend that 

the first draw from our random number generator is a 10, and we select the 10th historical return. We 

don’t remove that return before the next draw. If, on the second draw, our random number generator 

produces 10 again, then we select the same return. If we end up pulling 10 four time in a row, then our 

4-day return will be composed of the same 10th return repeated four times. Even though we only have 

500 returns to start out with, there are 5004, or 62.5 billion, possible 4-day returns that we can generate 

this way. This method of estimating parameters using sampling with replacement is often referred to as 

bootstrapping. The second detail that we need to pay attention to is serial correlation. We can only 

generate multi-period returns in the way just describe if single-period returns are independent of each 

other. For example, suppose that the standard deviation of gold has gone through long periods of high 

volatility followed by long periods of low volatility, and we believe our historical data accurately reflects 

this starting with 250 days of low volatility followed by 250 days of high volatility. If we randomly select 

returns with replacement, then the probability of getting a draw from the high volatility period is 1/2 

each time. If our random numbers are generated independently then there is only 1/16 = (1/2)4 chance 

of drawing four returns in a row from the high period, whereas historically the probability was much 

closer to 1/2 (except for the transition in the middle of the sample, where we switched from low to high 

volatility, low volatility days were always followed by low volatility days, and high volatility days were 

always followed by high volatility days). A simple solution to this problem: instead of generating a 

random number from 1 to 500, generate a random number from 1 to 497, and then select four 

successive returns. If our random number generator generates 125, then we create our 4-day return 

from returns 125, 126, 127, and 128. While this method will capture any serial dependence between 

periods, it greatly reduces the number of possible returns from 62.5 billion to 497, and effectively 

reduces the Monte Carlo simulation to the historical simulation method. 

 Of the three methods we have considered so far, Monte Carlo simulations are generally 

considered to be the most flexible. Their major drawback is speed. As computers get faster and faster, 

the speed of Monte Carlo simulations is becoming less of an issue. Still in some situations — a trading 

desk that require real-time risk number, for example —this speed issue may still rule out the use of 

Monte Carlo simulations. 

Hybrid VaR 
For the historical method or historical simulation, all of the data points are given equal weight. In 

practice, because market risk tends to changes over time, it might make sense to give more weight to 

more recent data. One very simple way to do this is to apply exponentially decreasing weight to the 
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historical data. For example, with a decay factor of 0.99, we would apply a weight of 1.00 to the most 

recent return, 0.99 to the second most recent, 0.992 to third, and so on.   

This general approach, using historical returns with decreasing weights, is often called the hybrid 

approach because it combines aspects of standard historical simulation and weighted parametric 

approaches; see, for example, Allen, Boudoukh, and Saunders (2004). 

Suppose we have 100 returns, sorted from worst to best, as before. In the case of the historical 

simulation, we found the VaR by moving down the table until we got to the fifth data point. For the 

hybrid approach we simply move down the table until we get to 5% of the total weights: 

 Rank t Return Weight 
% of Total 

Weight 
Cumulative 
% Weight 

Worst 1 50 -4.00% 0.61  0.95% 0.95% 

  2 40 -3.62% 0.55  0.86% 1.82% 

  3 9 -3.57% 0.40  0.63% 2.45% 

  4 48 -3.52% 0.59  0.94% 3.38% 

  5 37 -3.37% 0.53  0.84% 4.22% 

  6 18 -3.24% 0.44  0.69% 4.91% 

  7 54 -3.14% 0.63  0.99% 5.91% 

  8 63 -3.07% 0.69  1.09% 7.00% 

  9 8 -2.92% 0.40  0.63% 7.62% 

  … … … … … … 

  11 100 -2.80% 1.00  1.58% 10.60% 

  … … … … … … 

  99 41 3.79% 0.55  0.87% 99.32% 

Best 100 16 4.08% 0.43  0.68% 100.00% 
Table 2 

In this case, we get to 5% of the total weight between the sixth and seventh returns. At this point there 

are two approaches to deciding the VaR. The more conservative approach is to take the sixth return, 

−3.24%. The alternative is to interpolate between the sixth and seventh returns, to come up with 

−3.23%. Unless there is a strong justification for choosing the interpolation method, the conservative 

approach is recommended. 

The hybrid approach is fairly easy to implement, computationally efficient, and is underpinned 

by familiar historical returns. While only slightly more complicated than the delta-normal and historical 

simulation methods, the hybrid approach often produces much more reliable estimates of VaR. 

Cornish-Fisher VaR 
The delta-normal VaR model assumes that underlying returns are normally distributed and that option 

returns can be approximated using their delta-adjusted exposure. The Cornish-Fisher VaR model 

maintains the first assumption, while trying to improve the approximation for options. The method 

relies on what is known as the Cornish-Fisher expansion. The Cornish-Fisher expansion is a general 
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method that allows us to approximate the confidence intervals for a random variable based on the 

central moments of that variable. As with the delta-normal approach, the Cornish-Fisher approach can 

easily be extended to portfolios containing multiple securities 

 To start with, we introduce some notation. Define the value of an option as V, and the value of 

the option’s underlying as U, we can define the option’s exposure-adjusted Black-Scholes Greeks as 

follows: 

Δ̃ =
𝑑𝑉

𝑑𝑈
𝑈 = Δ𝑈 

Γ̃ =
𝑑2𝑉

𝑑𝑈2
𝑈2 = Γ𝑈2 

𝜃 =
𝑑𝑉

𝑑𝑡
 

Equation 2 

Given a return on the underlying, R, we can then approximate the change in value of the option using 

the exposure-adjusted Greeks as: 

𝑑𝑉 ≈ Δ̃R +
1

2
Γ̃R2 + θdt 

Equation 3 

If the returns of the underlying, R, are normally distributed with a mean of zero and a standard deviation 

of σ, then we can calculate the moments of dV based on Equation 3. The first three central moments 

and skewness of of dV are: 

μdV = E[dV] =
1

2
Γ̃σ2 + θdt 

σdV
2 = E[(dV − E[dV])2] = Δ̃2σ2 +

1

2
Γ̃2σ4 

μ3,dV = 3Δ̃2Γ̃σ4 + Γ̃3σ6 

𝑠𝑑𝑉 =
μ3,dV

σdV
3  

Equation 4 

Where μdV is the mean of dV, σdV
2  is the variance, μ3,dV is the third central moment, and sdV is the 

skewness. Notice that even though the distribution of the underlying is symmetric (the underlying 

distribution is normally distributed), the distribution of the option is skewed (sdV ≠ 0). This makes sense, 

given the asymmetric nature of the option payout function. That the Cornish-Fisher model captures the 

asymmetry of options is an advantage over the delta-normal model, which produces symmetrical 

distributions for options. 
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These central moments from Equation 4 can be combined to approximate a confidence interval 

using a Cornish-Fisher expansion, which can in turn be used to calculate an approximation for VaR. The 

Cornish-Fisher VaR of the position is given by: 

−𝑉𝑎𝑅 = 𝜇𝑑𝑉 + 𝜎𝑑𝑉 [𝑚 +
1

6
(𝑚2 − 1)𝑠𝑑𝑉] 

Equation 5 

where m corresponds to the distance in standard deviations for our VaR confidence level based on a 

normal distribution. Unfortunately, this formula is far from intuitive, and its derivation is beyond the 

scope of this book. The easiest way to understand the approximation is to use it to calculate VaR. 

 

Sample Problem 
Question 

You are asked to evaluate the risk of a portfolio containing a single call, with a strike price of 110, and 

three months to expiry. The underlying price is 100, and the risk free rate is 3%. The expected and 

implied standard deviations are both 20%. Calculate the 1-day 95% VaR using both the delta-normal 

method and the Cornish-Fisher method. Use 365 days per year for theta and 256 days per year for 

standard deviation. 

Answer 

To start with we need to calculate the Black-Scholes delta, gamma, and theta. These can be calculated in 

a spreadsheet or using other financial applications. 

Δ = 0.2038 

Γ = 0.0283 

Θ = −6.2415 

The one day standard deviation and theta can be found as follows: 

𝜎𝑑 =
20%

√256
= 1.25% 

Θ𝑑 = (
−6.2415

365
) = −0.0171 

Using m = −1.64 for the normal 5% confidence level, the delta-normal approximation is: 

−𝑉𝑎𝑅 = 𝑚𝜎𝑑𝑆Δ + Θ𝑑 = −1.64 ∙ 1.25% ∙ 100 ∙ 0.2038 − 0.0171 = −0.4361 

For the Cornish-Fisher, approximation, we first calculate the exposure adjusted Greeks: 

Δ̃ = Δ𝑈 = 0.2038 ∙ 100 = 20.3806 

Γ̃ = Γ𝑈2 = 0.0283 ∙ 1002 = 283.1397 
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Next we calculate the mean, standard deviation, and skewness for the change in option value:  

μdV =
1

2
Γ̃𝜎𝑑

2 + Θ𝑑 =
1

2
∙ 283.1379 ∙ (1.25%)2 − 0.0171 = 0.00503 

σdV
2 = Δ̃2𝜎𝑑

2 +
1

2
Γ̃2𝜎𝑑

4 = 20.380621.25%2 +
1

2
283.139721.25%4 = 0.06588 

𝜎𝑑𝑣 = √0.06588 = 0.256672 

μ3,dV = 3Δ̃2Γ̃𝜎𝑑
4 + Γ̃3𝜎𝑑

6 = 3 ∙ 20.38062 ∙ 283.1379 ∙ 1.25%4 + 283.137931.25%6 = 0.0087 

𝑠𝑑𝑉 =
μ3,dV

σdV
3 =

0.0087

0.2566723
= 0.51453 

We then plug the moments into our Cornish-Fisher approximation, Equation 5: 

−𝑉𝑎𝑅 = 𝜇𝑑𝑉 + 𝜎𝑑𝑉 [𝑚 +
1

6
(𝑚2 − 1)𝑠𝑑𝑉] = 0.00502 + 0.256672 [−1.64 +

1

6
(−1.642 − 1)0.514528]

= −0.3796 

The 1-day 95% VaR for the Cornish-Fisher method was a loss of 0.3796, compared to a loss of 0.4316 for 

the delta-normal approximation. It turns out that in this particular case the exact answer can be found 

using the Black-Scholes equation. Given the assumptions of this sample problem, the actual 1-day 95% 

VaR is 0.3759. In this sample problem, the Cornish-Fisher approximation is very close to the actual value, 

and provides a much better approximation than the delta-normal approximation. 

 

In certain instances, the Cornish-Fisher approximation can be extremely accurate. In practice, it is much 

more likely to be accurate if we do not go too far out into the tails of the distribution. If we try to 

calculate the 99.99% VaR using Cornish-Fisher, even for a simple portfolio, the result is unlikely to be as 

accurate as what we saw in the preceding sample problem. This is because returns are much more likely 

to be well approximated by a normal distribution closer to the mean of a distribution. As we will see in 

the next section there are other reasons why we might not want to calculate VaR too far out into the 

tails.  

Quantile Regression 
Another approach to calculating VaR is to use what is known as quantile regression. Pretend that we 

want to model returns using the following simple univariate regression model (See Miller (2012) Chapter 

8 for a review of regression analysis): 

𝑟𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝜀𝑡 

Equation 6 

where rt is the return at time t, xt is an explanatory variable, εt is an i.i.d. disturbance term, and α and β 

are constants. The standard method for estimating α and β using ordinary least squares (OLS) regression 

is to minimize the sum of squared errors. That is, we want to choose estimators for α and β, 𝑎̂ and 𝛽̂, 

such that they minimize the following sum: 
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𝑆𝑆𝐸 = ∑ 𝑒𝑡
2

𝑇

𝑡=1

= ∑(𝑟𝑡 − 𝛼̂ − 𝛽̂𝑥𝑡)
2

𝑇

𝑡=1

 

Equation 7 

Why do we minimize the sum of squared errors? Why not the sum of errors to the fourth power or the 

sum of absolute errors? It turns out that the choice of sum of squared errors is somewhat arbitrary (not 

completely arbitrary, but somewhat arbitrary), and under certain circumstances using other methods to 

calculate the regression parameters can be optimal. Minimizing the sum of absolute errors, for example, 

can produce more stable parameter estimates when the distribution of returns is fat tailed. 

 Minimizing the sum of absolute errors doesn’t seem so strange, but what would happen if we 

tried to set the regression parameter so that 10% of the time errors were negative and 90% of the time 

errors were positive? 

 

Figure 2 

The estimators in this case would produce what is known as a quantile2 regression. Figure 2 shows some 

sample data over which has been drawn the standard OLS regression line and a 10% quantile regression 

line. The 10% quantile regression line in effect draws a border. We expect to find 10% of the points 

                                                           
2 For those not familiar with the term a quantile is the generic term describing equally sized partitions of a data set. 
The top and bottom deciles of the income distribution refer to the 10% of people who earn the most and the 10% 
of people who earn the least, respectively. The top quintile refers to the top 20%. Percentiles divide a distribution 
a dataset into 100 equal parts. Percentiles, deciles and quintiles are all examples of quintiles. 
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below the line and 90% above the line. In other words, it is the 90% VaR. The advantage of a quantile 

regression is that it produces a VaR statistic directly, without making any distributional assumptions. 

   

Sample Problem 

 
Question 

Another risk analyst at your firm noticed that the firm’s VaR was highly correlated with the level of the 

CBOE Market Volatility Index (VIX). The analyst estimated the following 5% quantile regression for 1-day 

returns: 

𝑟𝑡 = 0.01 − 0.10𝑣𝑡 + 𝜀𝑡 

where vt is the level of the VIX at time t. What is the expected 1-day 95% VaR when the VIX is at 20%? 

40%? 

Answer 

When the VIX is at 20%, the VaR is a loss of 1%, or −1%: 

𝐸[𝑟𝑡] = 0.01 − 0.10 ∙ 0.20 + 0.0 = 0.01 − 0.02 = −0.01 

Similarly, when the VIX is at 40%, the VaR is a loss of 3%. 

 

 So how do we actually find the quantile regression parameters? In 1978, Koenker and Basset 

showed that for the θ quantile, where 0<θ<1, the quantile regression parameters can be found by 

minimizing the following: 

∑ 𝜃|𝑟𝑡 − 𝛼̂ − 𝛽̂𝑥𝑡|

𝑟𝑡≥𝛼̂−𝛽̂𝑥𝑡

+ ∑ (1 − 𝜃)|𝑟𝑡 − 𝛼̂ − 𝛽̂𝑥𝑡|

𝑟𝑡<𝛼̂−𝛽̂𝑥𝑡

 

Equation 8 

Notice that the first summation only counts those points where rt is greater than or equal to the 

expected value, given xt. Similarly, the second summation only counts those points where rt is less than 

expected, given xt. That minimizing this equation produces the correct quantile regression parameters is 

not obvious. To get some intuition for this result, it might help to consider what happens at the 

extremes. If θ is close to zero, then we want rt to be greater than the quantile regression line most of 

the time, that is greater than 𝛼̂ − 𝛽̂𝑥𝑡 most of the time. In other words, if we choose the parameter 

correctly, most of the data points will end up in the first summation, where the absolute deviation, |𝑟𝑡 −

𝛼̂ − 𝛽̂𝑥𝑡|, will be multiplied by something very close to zero, namely θ, resulting in a very low value for 

the equation. Similarly, if θ is close to one then most of the data points should end up in the second 

summation where they will be multiplied by (1- θ), which, in this case, is very close to zero.  
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In the special case where θ = 0.5, Equation 8 is equivalent to reducing the sum of absolute 

errors. The 50th percentile is also known as the median, so minimizing the sum of absolute errors 

produces a quantile regression line that defines the median for the regression. Be careful not to confuse 

this with the median of the dependent variable. Using our notation from Equation 6, the quantile 

regression line for θ = 0.5 defines the median of rt given xt, not the median of rt. 

 Quantile regression is a very generic method. In the last sample problem we showed just one 

possible way in which quantile regression could be used to estimate VaR based on a univariate 

regression model. In practice we can apply quantile regression to many other types of models. For 

example we could use quantile regression to estimate the parameters of a standard GARCH(1,1) time 

series model.  

No matter what form the model takes, the advantages of quantile regression are that it focuses 

on the quantile directly, it is robust to outliers, and it is non-parametric. The primary disadvantage of 

quantile regression is that there is no closed form solution to Equation 8. Unlike standard OLS 

regression, where the parameters can be determined using arithmetic or simple linear algebra, quantile 

regression requires linear programming or some other optimization algorithm for parameter estimation.  

With modern computers this is hardly an insurmountable problem. Simple quantile regressions can 

easily be solved using Excel’s Solver. Even still, the lack of a closed form solution makes understanding 

the parameters of a quantile regression more complicated. All of the tools that we have developed for 

OLS regression — goodness of fit, t-tests for parameter significance, etc. — need to be reevaluated for 

quantile regression. Because of this and because it is applicable to a much smaller class of problems, 

quantile regression is taught very rarely in statistics classes, even at the graduate level. This may sound 

like a catch-22, but is nonetheless a very real obstacle to the widespread adoption of this technique. 

Backtesting 
An obvious concern when using VaR is choosing the appropriate confidence interval. As mentioned, 95% 

has become a very popular choice in risk management. In some settings there may be a natural choice 

for the confidence level, but most of the time the exact choice is arbitrary. 

A common mistake for newcomers is to choose a confidence level that is too high. Naturally, a 

higher confidence level sounds more conservative. A risk manager who measures one-day VaR at the 

95% confidence level will, on average, experience an exceedance event every 20 days. A risk manager 

who measures VaR at the 99.9% confidence level expects to see an exceedance only once every 1,000 

days. Is an event that happens once every 20 days really something that we need to worry about? It is 

tempting to believe that the risk manager using the 99.9% confidence level is concerned with more 

serious, riskier outcomes, and is therefore doing a better job. 

The problem is that, as we go further and further out into the tail of the distribution, we become 

less and less certain of the shape of the distribution. In most cases, the assumed distribution of returns 

for our portfolio will be based on historical data. If we have 1,000 data points, then there are 50 data 

points to back up our 95% confidence level, but only one to back up our 99.9% confidence level. As with 
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any distribution parameter, the variance of our estimate of the parameter decreases with the sample 

size. One data point is hardly a good sample size on which to base a parameter estimate. 

A related problem has to do with backtesting. Good risk managers should regularly backtest 

their models. Backtesting entails checking the predicted outcome of a model against actual data. Any 

model parameter can be backtested. 

In the case of VaR, backtesting is easy. Each period can be viewed as a Bernoulli trial. In the case 

of one-day 95% VaR, there is a 5% chance of an exceedance event each day, and a 95% chance that 

there is no exceedance. Because exceedance events are expected to be independent, over the course of 

n days the distribution of exceedances follows a binomial distribution: 

𝑃[𝐾 = 𝑘] = (
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

Equation 9 

In this case, n is the number of periods that we are using to backtest, k is the number of exceedances, 

and (1 − p) is our confidence level. 

 

Sample Problem 
 

Question 

As a risk manager, you are tasked with calculating a daily 95% VaR statistic for a large commodities 

portfolio. Over the past 60 days, there have been two exceedances. How many exceedances should you 

have expected? What was the probability of exactly two exceedances during this time? Two or less? 

Answer 

Remember, by convention, for a 95% VaR the probability of an exceedance is 5%, not 95%. Over 60 days, 

we would expect to see 3 exceedance events, 3 = 5% × 60.  

The probability of exactly two exceedances is 22.59%: 

𝑃[𝐾 = 2] =  (
60
2

) 0.052(1 − 0.05)60−2 = 0.2259 

To get the probability of two or less exceedances, we simply perform the same calculation of all 

values less than or equal to two: zero, one and two. It is important not to forget zero: 

𝑃[𝐾 ≤ 2] = ∑ (
60
𝑘

) 0.05𝑘(1 − 0.05)60−𝑘

2

𝑘=0

= 0.0461 + 0.1455 + 0.2259 = 0.4147 

The probability of two or less exceedances was 41.47%. Even though we had less exceedances 

than expected, this outcome was not unlikely given the short time frame. In this case, the fact that we 

had less exceedances than expected is probably not a cause for concern. 
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As stated at the beginning of the chapter, another assumption of the VaR model is that the 

probability of an exceedance event conditional on all available information is equal to the unconditional 

probability of an exceedance. For example suppose we looked back over several years of data and 

observed that 30% of exceedances occurred on Tuesday and only 10% occurred on Thursdays. In theory, 

an exceedance should be equally likely on any given day of the week. In the long run, we would expect 

to see the exceedances equally allocated to each of the five business days, or 20% to each. Of course the 

30%/10% split between Tuesday and Thursday could just be a fluke. However, if the split turned out to 

be statistically significant, we would need to make an adjustment to our model. 

A common problem with VaR models is serial correlation in exceedances. The probability of an 

exceedance today, given that an exceedance occurred yesterday, should be no higher or lower than on 

any other day. A simple way to test for this serial correlation is to count the number of exceedances, and 

then count the number of times there is an exceedance on the day after an exceedance. The distribution 

of the day-after exceedances should also follow a binomial distribution. If we are forecasting a 1-day 

95% VaR, and there have been 40 exceedances, then we would expect that 2 of those exceedances 

occurred after another of the 40 exceedances, 2 = 40 × 5%. 

Another common problem with VaR models is the tendency for the probability of exceedances 

to vary with the level of risk.  This may seem counterintuitive, but exceedances should be no more likely 

to occur when risk is high than when risk is low. If we are measuring 95% VaR then there is always a 5% 

chance of an exceedance. To test that there is no correlation between exceedances and the level of risk 

we could divide our sample into high and low risk days. Just as before, we could test the significance of 

the number of exceedances in each subset using the binomial distribution. 

 

End of Chapter Questions 
1. Prove the formula for the first Cornish-Fisher moment, that is, given: 

𝑑𝑉 ≈ Δ̃R +
1

2
Γ̃R2 + θdt 

prove that: 

μdV = E[dV] =
1

2
Γ̃σ2 + θdt 

Remember that R is normally distributed with a mean of zero. 

2. You are the risk manager for a currency trading desk. The desk had a VaR exceedance today. What is 

the most likely day for the next VaR exceedance? 

3. You are asked to calculate the 1-day 95% VaR for a portfolio using the historical method with a 

window of 256 days. The table below contains the 20 worst backcast returns for the portfolio along with 

the time at which the returns, t = 0, 1, 2, … , 255. t=0 is the most recent return, and t=255 is the return 

form 255 days ago.  
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 t R 

1 42 -35% 

2 83 -29% 

3 10 -26% 

4 23 -25% 

5 3 -24% 

6 58 -21% 

7 188 -20% 

8 103 -19% 

9 131 -18% 

10 12 -16% 

11 116 -16% 

12 245 -16% 

13 150 -15% 

14 56 -14% 

15 61 -14% 

16 31 -13% 

17 69 -13% 

18 95 -13% 

19 161 -13% 

20 35 -12% 

 

4. Using the same data as in the previous question, calculate the 1-day 95% VaR using the hybrid 

method with a window of 256 days and a decay factor of 0.99. 
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Answers to End of Chapter Questions 
 

1. We take the approximation for dV as a given, as an equality, and take the expectations of both sides: 

𝐸[𝑑𝑉] = Δ̃E[R] +
1

2
Γ̃𝐸[R2] + θdt 

Because R has a mean of zero, E[R] = 0 and the variance is equal to E[R2]: 

𝜎2 = 𝐸[𝑅2] + 𝐸[𝑅]2 = 𝐸[𝑅2] + 02 = 𝐸[𝑅2] 

Substituting back into our previous equation, we have: 

𝐸[𝑑𝑉] = Δ̃0 +
1

2
Γ̃𝜎2 + θdt =

1

2
Γ̃𝜎2 + θdt 

2. The most likely day for the next exceedance is tomorrow. This is something of a trick question. It is 

tempting to guess that the next exceedance is equally likely to occur on any future day. In fact, if the 

probability of an exceedance on any given day is α, then the probability of an exceedance tomorrow is α, 

but the probability that the next exceedance is the day after tomorrow is (1− α)α. This is because in 

order for the next exceedance to be the day after tomorrow, two things have to happen: there is no 

exceedance tomorrow, and there is an exceedance the day after tomorrow. The probability of these two 

events are (1− α) and α, respectively, so the probability that both happen is (1− α)α. Because (1− α) is 

less than one, (1− α)α<α. For example is we are calculating the 95% VaR, then α = 5%. The probability 

that the next exceedance is tomorrow is 5%, and the probability that the next exceedance is the day 

after tomorrow is 5% × 95% = 4.75%. The probability continues to decline further out. The probability 

that the next exceedance happens in n day is, (1− α) (n-1)α, which is likewise always less than α. 

3. Five percent of 256 is 12.8, so the 95% VaR is between the 12th and 13th worst returns. Because we 

do not know the distribution between the 12th and 13th worst returns, we use the 12th. The 1-day 95% 

VaR is −16%, or a loss of 16%. 

4. In order to calculate the hybrid VaR we need to calculate weights for the returns. For each return, the 

corresponding weight is 0.99t. We can convert this to a percentage weight by dividing by the total 

weight, 92.37 = (1 − 0.99256)/(1 − 0.99). Starting with the worst return, we then sum these percentage 

weights to get the cumulative percentage weight until we reach 5%. This time, 5% occurs between the 

7th and 8th worst returns. The 7th worst return, −20%, is our 1-day 95% VaR. Many of the worst returns 

have occurred recently, so it is not surprising that the hybrid VaR is worse than the historical VaR. 
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 t R wt %wt cum. % 

1 42 -35% 0.6557 0.71% 0.71% 

2 83 -29% 0.4342 0.47% 1.18% 

3 10 -26% 0.9044 0.98% 2.16% 

4 23 -25% 0.7936 0.86% 3.02% 

5 3 -24% 0.9703 1.05% 4.07% 

6 58 -21% 0.5583 0.60% 4.67% 

7 188 -20% 0.1512 0.16% 4.84% 

8 103 -19% 0.3552 0.38% 5.22% 

9 131 -18% 0.2680 0.29%   

10 12 -16% 0.8864 0.96%   

11 116 -16% 0.3117 0.34%   

12 245 -16% 0.0852 0.09%   

13 150 -15% 0.2215 0.24%   

14 56 -14% 0.5696 0.62%   

15 61 -14% 0.5417 0.59%   

16 31 -13% 0.7323 0.79%   

17 69 -13% 0.4998 0.54%   

18 95 -13% 0.3849 0.42%   

19 161 -13% 0.1983 0.21%   

20 35 -12% 0.7034 0.76%   

 

 

 

 


